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Self-diffusion in clusters
An analytical model and its verification by molecular dynamics simulations
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Abstract. In this paper we propose a new analytical model for diffusion in a condensed system that describes
the process in terms of the dynamics of the system on the potential energy surface (PES). Theoretical pre-
dictions are compared with the results of molecular dynamics (MD) simulations for the Lennard–Jones (LJ)
clusters and show good agreement with them.

PACS. 36.40.-c Atomic and molecular clusters – 66.10.-x Diffusion and ionic conduction in liquids – 66.30.-h
Diffusion in solids

1 Introduction

There exists a variety of systems of different physical na-
tures (atomic and molecular clusters, “dust crystals”, poly-
mers, biomolecules, etc.), which are remarkably similar
from the point of view of their dynamics in potential en-
ergy surface (PES) terms. Furthermore, from this point
of view there is no essential difference between finite and
macroscopic systems. Typically, the PES consists of a large
number of the potential wells which are connected by the
saddle-point valleys. Each of the wells, or more specifically,
its minimum, corresponds to a certain mechanically stable
atomic configuration which represents one of the inherent
structures of the system (in the case of clusters, we call
these structures isomers). Depending on the temperature,
such systems usually show either solid-like or liquid-like be-
havior. Therefore, we will refer to them as to condensed
systems.

In recent years, much attention has been given to the
dynamics of complex systems on the PES [1–9]. The prime
objective has been to derive a master equation which would
allow one to study a system’s dynamics at large time scales,
when many inherent structures are involved [1–6]. Another
important objective is the modification of the conventional
methods of direct simulation (molecular dynamics (MD)
and Monte Carlo) for this purpose [8, 9].

A specific realization of a system’s dynamics at large
time scales is the process of diffusion (or of self-diffusion,
for systems of identical particles). A challenging problem
which still exists here is finding a unified description of the
process for the solid-like and liquid-like states (both for the
bulk matter [10, 11] and for clusters [12–14]). It is tempting
to address this problem in PES terms.
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In this paper, we adopt the known scenario of diffu-
sion: The system dwells for a while in a potential well and
then leaves it for another well. This has been considered
by Zwanzig [11] in application to the bulk liquid in par-
ticular. We propose, however, a new formalism for this
scenario, which is somewhat similar to the formalism pre-
viously used in [15] for considering rotational diffusion in
liquids. Specifically, we suppose that each of the potential
wells is characterized by a certain dependence of the mean
square displacement (MSD) of the atoms on time. At small
times, this dependence corresponds to the ballistic motion
of the atoms, whereas at large times it is saturated because
of the finite size of the wells. Then the total displacement
of the atoms in the system is a sum of the contributions of
the wells; in each of them, lifetimes follow a certain distri-
bution. A difference between the solid-like and liquid-like
states is that for the former, the system predominantly re-
sides in the wells in a waiting regime, whereas for the latter,
it passes the wells in the ballistic regime, or close to this
regime. An attractive feature of this formalism is that it
offers an apparent way for the correlation between the sys-
tem’s motions in different wells, which plays a key role for
the liquid-like state, to be taken into account. Theoret-
ical predictions are verified by the MD simulations for the
Lennard–Jones (LJ) clusters.

2 The model

Let the system visit the potential wells with the numbers
i= 1, ..., k for the time t; the system resides in each of the
wells for the time τ1, ..., τk, respectively (Fig. 1). To sim-
plify things, we assume all the wells to be identical, so that
the residence time in each of them is distributed according
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Fig. 1. Schematic picture of system’s dynamics on the PES.

to the same probability density p(t) (
∫∞

0 p(t)dt = 1). The
initial moment, when we start watching the system (t= 0),
may not coincide with the moment when the system enters
the first well, and the last moment of the watching inter-
val (t) may be different from the moment the system leaves
the kth well. Because of this, the total residence time of
the system in these wells will be τ ′1 + τ1 and τk + τ ′′k , re-
spectively. Thus, in the sequence of the events with the
probability density

P (τ ′1, τ1, τ
′′
1 ) = p(τ1 + τ ′1 + τ ′′1 )

P (τ ′1, τ1, ..., τk, τ
′′
k ) = p(τ1 + τ ′1)p(τ2)... (1)

×p(τk−1)p(τk + τ ′′k ), k > 1,

we will be interested in the events corresponding to all pos-
sible positive τ ′1, τ1, ..., τk, τ

′′
k at τ1 + τ2 + ...+ τk = t.

The current radius of the system in configuration space,
counted from the point corresponding to t = 0, is R(t) =
{x1(t), x2(t), ..., x3n(t)}, where n is the number of atoms in
the system, and xi(t) are the atomic coordinates. It can be
written as Rτ1,...,τk =

∑k
i=1 ∆R(τi), where ∆R(τi) is the

change of R(t) in the ith well. Then the MSD correspond-
ing to Rτ1,...,τk is

R2
τ1,...,τk

(t) =
∑

1≤i≤k

〈
∆R2(τi)

〉
(2)

+ 2
∑

1<i≤k

∑
j<i

〈∆R(τi) ·∆R(τj)〉 ,

where the corner brackets indicate the averages over a sub-
set of the phase trajectories, which are possible for the
given sequences of the wells and residence times under the
conditions under consideration (e.g., at a constant total en-
ergy or at a constant temperature).

The quantity ∆R(τi) ·∆R(τj) in the second term of
the right-hand side of (2) can be written as ∆R(τi)∆R(τj)
cos Θij , where Θij is the angle between the vectors ∆R(τi)
and ∆R(τj) (see Fig. 1). Since 〈cos Θ〉 = 0 at a uniform
random scattering, the first term in the right-hand side
of (2) can be associated with such events. Then the func-
tion of the second term is to take into account the angu-
lar correlations between the ∆R(τi) segments for differ-
ent wells, primarily in the range of small angles, where
〈cos Θ〉 ' 1.

To calculate R2
τ1,...,τk

, we assume the following:

(i) within a well, 〈
∆R2(τ)

〉
=R2

0(τ), (3)

where R0(τ) is a function which corresponds to the
ballistic motion of the atoms at τ → 0, and tends to
a finite value as τ →∞; and

(ii) between the wells,

〈∆R(τi) ·∆R(τj)〉=R0(τi)R0(τj)Q(τi)...Q(τj), (4)

where i < j, and Q(τ) is a function which describes
how the direction of the trajectory changes within
a single well. Equation (4) implies, in particular, that
we assume

〈cos Θij〉=Q(τi)...Q(τj), (5)

i.e., that the change in the direction of the trajectory
can be described as a successive angular scattering of
the trajectory by the individual wells.

Averaging R2
τ1,...,τk

over all possible sequences of the
wells and also over all possible residence times yields

R2(t) =
1

τr

∞∑
k=1

∫
· · ·

∫
τ1+τ2+...+τk=t

τ ′1,τ1,...,τk,τ
′′
k>0

R2
τ1,...,τk

(t) (6)

×P (τ ′1, τ1, ..., τk, τ
′′
k ) dτ ′1 dτ1...dτk dτ ′′k ,

where τr =
∫∞

0 dτ
∫∞
τ
p(τ1)dτ1 =

∫∞
0 τp(τ)dτ is the mean

residence time. Then, inserting (1)–(4) into the right-hand
side of (6) and applying the Laplace transformation to the
result, we eventually arrive at the equation which defines
the velocity autocorrelation function (VAF) of the system
C(t) =

∑n
i=1 〈vi(t0) ·vi(t0 + t)〉 (vi is the velocity of the

ith atom) in terms of the functions R0(t), Q(t) and p(t) for
a single well:

L [C(t)] =
1

τr
L

C0(t)

∞∫
t

f(τ)dτ

 (7)

+
1

τr

{
L
[

d
dt [R0(t)Q(t)] f(t)

]}2

1−L [Q(t)p(t)]
,

whereL [·] is the Laplace transform, f(t)=
∫∞
t
p(τ)dτ is the

survival probability, and C0(t) = (1/2)(d2/dt2)R2
0(t) is

the VAF for a single well. Correspondingly, the power spec-
trum is calculated as I(ω) = 2

∫∞
0
C(t) cos(ωt)dt, and the

MSD as R2(t) = 2
∫ t

0
dt1
∫ t1

0
C(t2)dt2.

In the simplest case, when one neglects the angular
correlations (Q(t) = 0) and assumes the Poisson distri-
bution for p(t), (7) transforms into the relation C(t) =
C0(t) exp(−νt), corresponding to the Zwanzig theory [11].
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Finally, for the self-diffusion coefficient, which can be
calculated as D =

∫∞
0 C(t)dt/3n= I(0)/6n, we have

D =
1

3nτr


∞∫

0

R2
0(t)p(t)dt+

[
∞∫
0

R0(t)Q(t)p(t)dt

]2

1−
∞∫
0

Q(t)p(t)dt

 .

In their general features, the functions R0(t), Q(t) and
p(t) are expected to be common to all condensed systems.
At the same time, it is unlikely that there exist analytical
relations for them that are able to describe any specific sys-
tem in every essential detail. Therefore, we introduce some
“basic” relations for R0(t), Q(t), and p(t), which repro-
duce these functions in the most important features and
can serve as a basis for their further specification:

1. R2
0b(t) = V 2t2/(1 + t2/a2), where V 2 = 2Ekin/m (Ekin

is the mean kinetic energy of the system, and m
is the atomic mass), and a2 = R2

0∞/V
2, where R2

0∞
is the maximum value of the MSD within a single
well. At t→ 0, R2

0b(t) = V 2t2 (the ballistic motion
of the atoms), and at t→∞, R2

0b(t) = R2
0∞. Corres-

pondingly, C0b(t) = V 2(1− 3t2/a2)/(1 + t2/a2)3 and
I0b(ω) = πV 2a3ω2 exp(−aω)/2.
Note that V 2 and R2

0∞ are the extensive quantities, be-
ing proportional to the number of vibrational degrees
of freedom (it is assumed that the system executes no
overall translation and rotation). Therefore, the param-
eter a is an intensive quantity, i.e., it is independent of
the system size. It should also be mentioned that V and
R0∞ (and, consequently, a) depend on the thermody-
namics conditions, in particular, on the total energy (or
the temperature) for a free system.

2. Qb(t) = exp(−q2t2/2), where q is an intensive param-
eter depending, again, on the thermodynamics condi-
tions. The reasoning behind this form of Qb(t) is as
follows.
At large residence times, the system may randomly
leave the well in an arbitrary direction, i.e., its trajec-
tory is scattered by the wells uniformly (〈cos Θ〉 → 0).
Corresponding with this is Qb(t)→ 0 at t→∞.
At small residence times, the system passes the wells
in the ballistic regime, or in a regime close to it. As
a result, a near-forward scattering prevails, for which

〈cos Θij〉 ' 1−
〈

Θ2
ij

〉
/2. Since the acceleration of the

system is approximately constant at small times, the
change in the direction of the trajectory within a single
well is proportional to τ , i.e., ∆Θ = qτ , where q is a con-
stant. Then, taking into account that the trajectory is
supposed to be randomly scattered, for the sequence of

the wells i, ..., j, we can write
〈

Θ2
ij

〉
= q2

∑j
k=i τ

2
k , or

〈cos Θij〉 ' 1− q2/2
∑j
k=i τ

2
k . For Qb(t)' 1− q2t2/2 at

small t, this latter equation is consistent with (5). The
value of the parameter q is of the order of the inverse
of the time corresponding to the end of the ballistic
regime.

3. pb(t) = 1/ν exp(−νt), which is the Poisson distribution.
Correspondingly, the survival probability is fb(t) =

exp(−νt). Because we consider the dynamics of the
system in the configuration space, the frequency ν re-
lates to the whole system rather than to a single atom.
Therefore it is an extensive quantity.

To conclude this section, we note that the model is
consistent with the thermodynamics limit (n→∞); this
can easily be verified by substitution of the given basic
relations into the derived equations. In particular, the self-
diffusion coefficient is an intensive quantity.

3 Verification of the model by molecular
dynamics simulations and brief discussion

To verify the model, we have conducted the constant-
energy MD simulations for a set of the LJ clusters (for
the computational background, see [16]). Below we present
some results for 13-atom clusters as an example.

When simulating diffusion in the conventional way [12–
14], one obtains data which represent some averages taken
over a variety of the isomers. Since the number of geometri-
cally different isomers (possessing different characteristics)
is large, a comparison of the model with the simulation
data turns out to be a real challenge: On one hand, con-
sideration of all essential isomers is impractical, and on the
other hand, introducing some average values of the param-
eters into the model, which would effectively account for
different characteristics of the isomers, may disguise pos-
sible defects of the model.

Because of this, we first considered a subsystem of the
LJ13, which consists of permutational copies of the ground-
state isomer. These copies (the icosahedra with energies
U =−44.3268) are directly connected through the transi-
tion states (the decahedra, U =−41.5552; here and below,
all values are given in the LJ units) [17]. Therefore, in the
given subsystem, the self-diffusion is possible. On the other
hand, all the isomers are geometrically identical; this cor-
responds exactly to the previously given formulation of the
model.

To investigate this subsystem, we applied the technique
recently developed in [16], which makes it possible to con-
fine the MD trajectory to a specified catchment area on the
PES; in this case, to the area consisting of the wells for the
ground-state isomer permutational copies. Typical results
are shown in Fig. 2.

Initially, the system was confined to the catchment
basin corresponding to a single copy, and the distributions
R2

0(τ) and f(τ) were calculated (Figs. 2a,b). The first thing
immediately seen from these distributions is the sharp in-
crease in f(τ) (and thus in p(τ)) at t→ 0, which is not
consistent with the Poisson law. Such a singularity has pre-
viously been observed in the LJ clusters [16, 18–20]. The
origin of it is that the system ballistically crosses the wells
in the neighborhood of the saddle points of high order [16].
It is also pertinent that, at least for the conditions of [16,
18–20], the width of the wave packet is greater than the
characteristic length of the region of the PES to which the
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Fig. 2. Self-diffusion in the subsystem of the ground-state iso-
mers (LJ13, E = 15); for the definitions of the plotted func-
tions, see the text. The symbols and lines correspond to the
computer simulations and theory, respectively. In all cases,
q = 6.67, and ν1 = 1.64, ν2 = 0.078, α1 = 0.56, and α2 = 0.44
for p(τ ). The dashed line is the one-mode approximation for
R2

0(τ ) (V 2 = 10.7, a= 0.36), and the solid line is the two-mode
approximation (V 2 = 10.7, a1 = 0.29, a2 = 0.84, α1 = 0.91, and
α2 = 0.09). The VAF (panel d) is normalized by division by
C(0) = V 2.

singularity can be related; therefore, it may be a peculiar-
ity of the classical approach.

To account for this singularity, we used a two-mode
Poisson distribution p(τ) = α1pb1(τ) +α2pb2(τ), where
α1 +α2 = 1, and pb1(τ) and pb2(τ) are characterized by dif-
ferent values of ν. A similar relation holds for f(t). The
result of this approximation is shown in Fig. 2b by the
solid line.

In contrast to the residence times, the distribution of
R2

0 is reproduced by the basic function R2
0b(τ) reasonably

well (the dashed line in Fig. 2a). Nevertheless, to achieve
a close approximation, it turned out to be necessary to use
a two-mode representation again, one similar to that for
the residence times (the solid line in Fig. 2a). The modes
were characterized by different values of a, but by the same
value of V . Presumably, these two different modes in R2

0,
and so in the VAF, can be related to either the bulk and
surface components of diffusion, or to two different modes
of atomic vibrations, which in the case of the bulk mat-
ter, correspond to the longitudinal and transverse sound
velocities [11].

For Q(τ), we used its basic form Qb(τ).
With these analytical approximations in hand, we were

able to calculate all desirable quantities and compare them
with those obtained by the direct MD simulations. The re-
sults are shown in Fig. 2c,d. The theoretical curves take
into account the angular correlations (Q(τ) 6= 0). However,
since the system resides in the well in a waiting regime (the
mean residence time is about 6.0, when R2

0(τ) is saturated

Fig. 3. The normalized VAFs for LJ13. The symbols stand
for the computer simulation results, and the lines for the the-
oretical predictions. The solid and dashed lines correspond,
respectively, to the taking into account and neglect of the scat-
tering of the MD trajectory into small angles (for the solid lines
q = 6.67 for both E = 15 and E = 19, and for the dashed lines
Q(t) = 0). The following two-mode approximations are used:
E = 15: ν1 = 87, ν2 = 1.3, α1 = 0.15, α2 = 0.85 for p(τ ), and
V 2 = 9.62, a1 = 0.33, a2 = 1.56, α1 = 0.92, α2 = 0.08 for R2

0(τ );
E = 19: ν1 = 115, ν2 = 2.37, α1 = 0.22, α2 = 0.78 for p(τ ), and
V 2 = 11.2, a1 = 0.21, a2 = 0.78, α1 = 0.53, α2 = 0.47 for R2

0.

at τ ' 2.0; see the panels a and b of Fig. 2, the result is
practically independent of a specific value of q, and it is
very close to that for Q(τ) = 0.

The next step was to apply the derived equations to the
conventional case, i.e., to the system freely exploring the
PES. Again, for every total energy, the distributionsR2

0(τ)
and p(τ) for individual wells were calculated and fitted by
two-mode distributions as before, except that they were
averaged over all the wells visited by the system. Figure 3
shows the VAFs of the system for two values of the total
energy (E = 15 and E = 19). The first energy falls into the
melting transition range, and the second one corresponds
to the well developed liquid-like state (see, e.g., [12]). It is
seen that in contrast to the melting transition range (and,
as it should be, to the solid-like state) for the liquid-like
state, the neglect of the angular correlations has a dramatic
effect on the VAF (the dashed curve in the right-hand
panel): First, the VAF is no longer an even function at t= 0
(as it has to be), and secondly, the characteristic minimum
in it disappears.
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